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Using the parallel tempering algorithm and graphics processing unit accelerated techniques, we have per-
formed large-scale Monte Carlo simulations of the Ising model on a square lattice with antiferromagnetic
�repulsive� nearest-neighbor and next-nearest-neighbor interactions of the same strength and subject to a
uniform magnetic field. Both transitions from the �2�1� and row-shifted �2�2� ordered phases to the para-
magnetic phase are continuous. From our data analysis, re-entrance behavior of the �2�1� critical line and a
bicritical point which separates the two ordered phases at T=0 are confirmed. Based on the critical exponents
we obtained along the phase boundary, Suzuki’s weak universality seems to hold.
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I. INTRODUCTION

For the nearest-neighbor �NN� Ising antiferromagnet on
the square lattice in a uniform magnetic field, the low-
temperature ordered phase is separated from the paramag-
netic phase by a simple, second-order phase boundary.
�Within the context of the lattice gas model this system could
be described as having repulsive NN coupling and forming a
c�2�2� ordered state.� With the addition of repulsive �anti-
ferromagnetic� next-nearest-neighbor �NNN� interactions the
situation becomes more complicated. Early Monte Carlo
simulations suggested that a single, superantiferromagnetic,
or �2�1� phase existed, separated from the paramagnetic
phase by a single phase boundary �1–3�. A degenerate row-
shifted �2�2� state was also predicted at zero temperature.
�See Fig. 1 for a schematic representation of these states.� On
the other hand, symmetry arguments based on Landau theory
�4� predict the order-disorder transitions of �2�1� and
�2�2� structures belong to XY model with cubic anisotropy.

The original motivation of this study was to investigate
the possibility of XY-like behavior of the Ising spins on the
square lattice, since there is numerical evidence �5� that Ising
antiferromaget with attractive NNN interaction on the trian-
gular lattice has an XY-like intermediate state between the
low-temperature ordered state and high-temperature disor-
dered state. In fact, the present model has already been stud-
ied by many authors using different approaches. An early
Monte Carlo study �3� comprehensively showed the phase
diagrams for several different interaction ratios �R’s� of NNN
to NN interaction. But due to the deficiencies of computer
resources at that time, for the R=1 case, a disordered region
was missed between the two ordered phases which was
pointed out in a later interfacial free-energy study �6�. Mean-
while, transfer-matrix studies �7,8� found re-entrant behavior
for the �2�1� transition lines. While a study using the
cluster-variation method �9,10� concluded that for a range of
R �0.5�1.2� the system undergoes a first-order transition, a
recent Monte Carlo study �11� using a variant of the Wang-
Landau method �12� focused on the R=1 case without exter-
nal field and found the phase transition is of second order.
For external field H=4 �in the unit of NN interaction con-
stant� the two ordered phases, namely, �2�1� and row-

shifted �2�2�, are degenerate at zero temperature so it is
tempting to think that the cubic anisotropy would be zero for
this field and that there could be a Kosterlitz-Thouless tran-
sition.

In this paper, we carefully study the location of phase
boundaries and the critical behavior for the case R=1. In
Sec. II the model and relevant methods and analysis tech-
niques are reviewed. Our results are presented in Sec. III,
along with finite-size scaling analyses, and we summarize
and conclude in Sec. IV.

II. MODEL AND METHOD

A. Model

The Ising model with NNN interaction is described by the
Hamiltonian

H = JNN �
�i, j�NN

�i� j + JNNN �
�i, j�NNN

�i� j + H � �i, �1�

where �i ,� j = �1, JNN and JNNN are NN and NNN interac-
tion constants, respectively, H is an external magnetic field,
and the sums in the first two terms run over indicated pairs of

FIG. 1. Schematic plots of c�2�2�, �2�1�, and row-shifted
�2�2� ordered structures within the context of the lattice gas
model. �In magnetic language, filled circles correspond to up spins
and empty circles correspond to down spins.�
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neighbors on a square lattice with periodic boundary condi-
tions. Both JNN and JNNN are positive �antiferromagnetic�
and the ratio R=JNNN /JNN.

For the R=1 case, the ground states would be the
�2�1� state, also known as superantiferromagnetic state, in
small magnetic fields; and at higher fields it would be a
row-shifted �2�2� state, which differs from the �2�2� state
in the sense that the antiferromagnetic chains in the former
state can slide freely without energy cost. See Fig. 1. Locally,
the structure may appear to be �2�2�, but for large enough
lattices the equilibrium structure always shows row shifting.
As a result, such a row-shifted �2�2� state is highly degen-
erate, and the antiferromagnetic sublattice exhibits only one-
dimensional long-range order. In terms of the sublattice mag-
netizations

M� =
4

N
�
i��

�i, � = 1,2,3,4, �2�

we can define two components of the order parameter for the
�2�1� state

Ma = �M1 + M2 − �M3 + M4��/4, �3�

Mb = �M1 + M4 − �M2 + M3��/4, �4�

with a computationally convenient root-mean-square order
parameter

Mrms = 	�Ma�2 + �Mb�2. �5�

Since Mrms would have a limiting value of 1
2 for the row-

shifted �2�2� state and be zero for the disordered state, it
can also be used as an order parameter for the row-shifted
�2�2� state.

Other observables, such as the finite lattice ordering sus-
ceptibility � and fourth-order cumulant U, are defined in
terms of the order parameter Mrms as

� =
N

T
���Mrms�2� − �Mrms�2� , �6�

U = 1 −
��Mrms�4�

3��Mrms�2�2 , �7�

where N is the total number of spins and T is the simulation
temperature. In some cases, the true ordering susceptibility
�+, which is N

T ��Mrms�2�, is used to eliminate simulation er-
rors resulting from �Mrms�, where the order parameter is
known to be zero for the infinite lattice.

B. Simulation methods

For small lattice sizes, Wang-Landau sampling �12� was
used to obtain a quick overview of the thermodynamic be-
havior of our model. A two-dimensional random walk in en-
ergy and magnetization space was performed so that the den-
sity of states g�E ,M� could be used to determine all
thermodynamic quantities �derived from the partition func-
tion� for any value of temperatures and external field. Con-
sequently, “freezing” problems are avoided at extremely low

temperatures. This allowed us to determine the “interesting”
regions of field-temperature space; however, it quickly be-
came apparent that, because of subtle finite-size effects, quite
large lattices would be needed. Unfortunately, as L increases,
the number of entries of histogram explodes as L4 and it
proved to be more efficient to use parallel tempering instead.

Since a large portion of interesting phase boundary is at
relatively low temperatures and many local energy minima
exist which makes the relaxation time rather long, the paral-
lel tempering method �13,14� is a good choice for simulating
our model. The basic idea is to expand the low-temperature
phase space by introducing configurations from the high
temperatures. So, many replicas at different temperatures are
simulated simultaneously, and after every fixed number of
Monte Carlo steps, a swap trial is performed with a
Metropolis-like probability, which satisfies the detailed bal-
ance condition. The transition probability from a configura-
tion Xm simulated at temperature �m to a configuration Xn
simulated at temperature �n would be

W�Xm,�m
Xn,�n� = min�1,exp�− ��� , �8�

� = ��n − �m��Hm − Hn� . �9�

We chose the temperatures for the replicas to be in a geo-
metric progression �15�, which would make acceptance rates
relatively constant among neighboring temperature pairs, and
the total number of temperatures was chosen to make the
average acceptance rate above 20%.

The multiplicative congruential random number generator
RANECU was used �16,17�, and some results were also ob-
tained using the Mersenne Twister �18� for comparison. No
difference was observed to within the error bars.

Typically, data from 106 to 107 MCS were kept for each
run and three to six independent runs are taken to calculate
standard statistical error bars. For parallel tempering, the
swap trial was attempted after every MCS. In all the plots of
data and analysis shown in following sections, if error bars
are not shown they are always smaller than the size of the
symbols.

In general, such replica exchange not only applies to the
temperature set, but also can apply to any other sets of fields,
such as the external magnetic field. Following the same ar-
gument, one can get the transition probability from �Xm ,Hm�
to �Xn ,Hn�,

W�Xm,Hm
Xn,Hn� = min�1,exp�− ��� , �10�

� = ��Hn − Hm��Mm − Mn� , �11�

where Mm ,Mn are the uniform magnetizations of replica m
and n, respectively.

C. Finite-size scaling analysis

To extract critical exponents from the data, we performed
finite-size scaling analyses along the transition lines. Since
the maximum slope of the fourth-order cumulant U follows
�19�

JUNQI YIN AND D. P. LANDAU PHYSICAL REVIEW E 80, 051117 �2009�

051117-2



dU

dK
�

max
= a�L1/	�1 + b�L−
� , �12�

where K=
JNN

kBT , the correlation length exponent 	 can be esti-
mated directly.

With the exponent 	 and critical temperature Tc at hand,
the critical exponent � and � can be extracted from the data
collapsing of the finite-size scaling forms,

M = L−�/	X̄�tL1/	� , �13�

�T = L�/	Ȳ�tL1/	� , �14�

where t= 
1− T
Tc


, and X̄ and Ȳ are universal functions whose
analytical forms are not known. One can also estimate the
exponent � from the relation of the peak position with lattice
size for the specific heat

Cmax = cL�/	 + C0 �15�

where C0 is the “background” contribution. In some cases
when the appropriate paths, i.e., which are perpendicular to
the phase boundary, are ones of constant temperatures, then
the critical behavior would be expressed in terms of reduced
field h= 
1− H

Hc

, and all the above analysis still applies.

D. GPU acceleration

General purpose computing on graphics processing units
�GPUs� attracts steadily increasing interest in simulational
physics �20–22�, since the computational power of recent
GPU exceeds that of a central processing unit �CPU� by or-
ders of magnitude. The advantage continues to grow as the
performance of GPU’s doubles every year. Recently, a GPU
accelerated Monte Carlo simulation of Ising models �22� was
performed. Compared to traditional CPU calculations, the
speedup was about 60 times.

The idea behind the implementation in Ref. �22� can be
easily extended to our model, and the parallel tempering al-
gorithm is naturally realized. Initially, all the replica are
loaded to the global memory of the GPU. For each replica,
the entire lattice is divided into four sublattices, then spins in
the same sublattice can be updated simultaneously by the
GPU using a Metropolis scheme, and the swap of configura-
tions of replica pairs can also be achieved in parallel.

On the GeForce GTX285 graphics unit, our code runs
about ten times faster than it does on the 32 CPUs of IBM
p655 cluster using message passing interface for parallel
computation.

III. RESULTS AND DISCUSSION

A. Phase diagram and short-range ordering

From the ground-state analysis, with zero or low field the
ordered state would be the superantiferromagnetic, or
�2�1�, structure. As the external field increases to
4H /JNN8, more spins align in the opposite field direc-
tion, and the ordered structure would be the row-shifted
�2�2�. With even stronger fields, the system becomes para-
magnetic. In the region near H /JNN=4 a mixture of �2�1�
and row-shifted �2�2� is visible.

FIG. 2. The phase diagram for the Ising square lattice with
antiferromagnetic nearest- and next-nearest-neighbor interactions in
a magnetic field for R=1. Open circles and pluses denote simulation
results. The solid lines are second-order transition lines, while the
dashed line indicates the “short-range-ordering” line.

(b)

(a)

FIG. 3. Variation in the specific heat C versus field H with
lattice sizes L=20,40,80,160,200,300 for paths of constant: �a�
kBT /JNN=1.2 and �b� kBT /JNN=1.1.
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For finite temperatures, we found that the fourth-order
cumulant is always a good quantity to use to locate the tran-
sition points, while the data for other quantities, such as the
specific heat or susceptibility, may look “strange” due to the
effect of neighboring critical points. To help the reader un-
derstand the observed thermodynamic properties, the final
phase diagram for R=1 is plotted in Fig. 2: The solid lines
are the phase boundaries, all of which are continuous. The
dashed line inside the �2�1� ordered phase indicates a
“short-range-ordering” line, which was located from the peak
position of the specific heat. As shown in Fig. 3, for paths of
constant temperature kBT /JNN=1.1 and 1.2, there are two
peaks, and the one that increases with lattice size corre-
sponds to the critical point.

An indication of the complexity of the finite-size behavior
is clearly seen in the bottom portion of Fig. 3 in which the
small lattices actually have minima in the specific heat for
field values that eventually show phase transitions for suffi-
ciently large systems. The round-shaped size-independent
peak is due to the short-range ordering of the �2�1� “clus-
ters” of different orientation from the ordered background.
No corresponding behavior was observed from the suscepti-
bility or the fourth-order cumulant.

In order to confirm the above argument, we also calcu-
lated the NN and NNN pair-correlation function, that is
��i� j�, for paths of different fields crossing this line. The

correlation function data are plotted in Fig. 4. The NN pair
correlation decreases from zero to a minimum and then in-
creases to positive values, while the NNN pair correlation
increases monotonically from −1.

B. Critical behavior

The data for the specific heat and susceptibility for three
different values of H are plotted in Fig. 5.

Without the field, they both show very sharp peaks, and
from the magnitudes of the peak values of the specific heat,
as shown in Fig. 6�b�, we can obtain a rather accurate esti-
mate of the exponent ratio � /	=0.357�8�, which is obvi-
ously not zero. In Fig. 6�a�, we also show the curve fit for the
maximum slope of dU

dK for H=0, and extract the exponent
	=0.847�4� directly.

Both values of � and 	 are quite consistent with the early
estimates in Ref. �3�, and the value of � /	 is different from
Ref. �11�, in which the 1 /L correction term was assumed up
to lattice size L=160.

The same procedure was repeated for H /JNN=2.5 and 3.3;
however, as shown in Fig. 5, the peaks of the specific heat

(b)

(a)

FIG. 4. Nearest- and next-nearest-neighbor correlation func-
tions. The field is varied for paths of three different temperatures:
kBT /JNN=0.4, 0.5, and 0.6 across the short-range-ordering line.

(b)

(a)

FIG. 5. Specific heat and susceptibility for three different fields
across the phase boundary. Data are for: L=100, �; L=120, �;
L=160, �; L=200 �; L=300 +; L=400 �.
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become increasingly rounded as the field increases, which
makes it rather difficult to get a direct estimate of the expo-
nent �. Because of this it was necessary to obtain data for
much larger lattice sizes, a task that was only possible with
the use of GPU computing. In fact, as the value of 	 in-
creases with the field, for H /JNN=3.3, according the hyper-
scaling law �=2−d	, where d=2 is the dimension of the
system, � should be negative. Although the curve fit is not
stable, given the value of � we can get a fit within error bars.
Such continuous increasing of the exponent 	 up to values
much greater than one is actually consistent with the findings
of an early transfer-matrix study �8�.

To estimate the critical exponents � and �, we performed
data collapsing with a large range of lattice sizes for the
order parameter and its susceptibility. As shown in Fig. 7, the
data in both finite-size scaling plots collapse very nicely onto
single curves, and the ratio � /	 and � /	 agree with values of
the two-dimensional �2D� Ising universality class within er-
ror bars.

Hence, although the individual exponents are nonuniver-
sal, Suzuki’s weak universality holds quite well. Another
data collapsing along the path of constant H /JNN=6 across
the phase boundary of the row-shifted 2�2 state is shown in
Fig. 8. The quality of the data collapsing is also excellent,
and again, the exponents are nonuniversal. The estimate for
� /	 is a bit low but � /	 agrees well with prediction of weak
universality.

In Table I, the critical points and exponents � ,� ,	, and �
for several typical paths of constant H or T across the phase
boundary are listed.

(b)

(a)

FIG. 6. Curve fits using the leading terms of Eqs. �12� and �15�
for the maximum slopes of dU

dK �a� and peak values of specific heat
�b�, respectively.

(b)

(a)

FIG. 7. Finite-size scaling data collapsing along paths of con-
stant H /JNN=0 and 2.5 for root-mean-square order parameter and

its ordering susceptibility, respectively. t�= 
1−
Tc

T 
 and t= �1− T
Tc �.

Data are for: L=80, �; L=100, �; L=120, �; L=160, �; L
=200 �; L=300, +; L=400, �.
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C. Reentrance behavior

Close to the region between the two ordered phases the
correlation length exponent 	 turns out to be quite large, and
correspondingly the location of the critical points becomes
very difficult to determine. In addition, the specific-heat
curves look “strange,” see Fig. 3, because the exponent � /	
would have a negative value with large magnitude, much
larger lattice size is needed to approach to the limiting peak
value. Since Suzuki’s weak universality seems to hold along
the transition line, we fixed the values of � /	=0.125 and
� /	=1.75 for the data collapsing analysis to get a better
estimate of the critical point and the exponent 	.

As shown in Fig. 9, the crossing point of the fourth-order
cumulant curves for a path of constant kBT /JNN=0.7 is
slightly above H /JNN=4, and from the data collapsing analy-
sis, see Fig. 10, we obtained an estimate of the critical point
to be Hc /JNN=4.052�7�. Hence, we confirm the reentrant be-

havior of the �2�1� transition line, which could result from
the appearance of �2�2� “clusters” that help to sustain the
�2�1� order at low temperatures even when the external
field is slightly bigger than 4.

For the paths of constant kBT /JNN=0.45, the curves of the
fourth-order cumulant shows two crossing points and the
finite-size effect is quite obvious. See Fig. 11.

For the larger lattice size, the two crossing points move
toward lower fields but they do not approach each other.
Thus, a region of disorder remains between the two different
ordered states, even down to quite low temperatures. �If
however, small lattices are used with insufficient data preci-
sion, it looks as though the curves for different lattice sizes
coincide. Such behavior would indicate, erroneously, the
presence of an XY-like region.� In Fig. 12, we show data
collapsing fits along the path of constant kBT /JNN=0.5 �and
excellent data collapsing is also found along the path of con-
stant kBT /JNN=0.3�, which confirms that there is a disor-
dered region in between the two ordered states.

We thus conclude that there is no XY-like region and that
the two phase boundaries probably only come together at a
bicritical point at T=0, although we cannot exclude the pos-
sibility of a bicritical point at very low, but nonzero, tem-
perature. However, the data do not yield any hint of such a
bicritical point; but the lack of data points for T0.2 in Fig.
2 precludes us from making a definitive statement about this
issue. �Moreover, the reentrant behavior of the �2�1� phase

TABLE I. Values of critical-point temperatures or magnetic fields and corresponding critical exponents
for several paths of constant temperature or field across the phase boundary of the �2�1� and � *� row-shifted
�2�2� ordered phases.

Order Path Tc or Hc � � � 	 � /	 � /	

2�1 H=0 2.0820�4� 0.302�7� 0.103�3� 1.482�7� 0.847�4� 0.122�4� 1.750�12�
H=2.5 1.6852�3� 0.104�19� 0.118�3� 1.657�6� 0.947�7� 0.125�3� 1.750�14�
H=3.3 1.3335�6� 0.130�5� 1.930�6� 1.102�8� 0.118�5� 1.751�14�

2�2* H=6 0.7293�7� 0.110�5� 2.072�6� 1.176�9� 0.094�4� 1.762�14�
T=0.5 6.848�5� 0.126�4� 1.775�5� 1.02�2� 0.124�5� 1.740�34�

(b)

(a)

FIG. 8. Data collapsing along the path of constant H /JNN=6 for
root-mean-square order parameter and its ordering susceptibility,
respectively. Data are for: L=80, �; L=100, �; L=120, �;
L=160, �; L=200�; L=300, +; L=400, �.

FIG. 9. Fourth order cumulant U versus field H along the path
of constant kBT /JNN=0.7 for lattice size L=32,64,128,256.
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makes it very difficult to study the approach to T=0.� The
variation in the critical exponents is consistent with the
changing magnetic field producing different effective
anisotropies which, in turn, is expected to yield nonuniversal
behavior �23�. Due to the large values of 	 near the bicritical
point �and correspondingly strongly negative values of ��,
we consider it also extremely unlikely that tricritical points
could be found along these transition lines as T becomes
small.

IV. CONCLUSION

We have carried out large-scale Monte Carlo simulations
for the square-lattice Ising model with repulsive �antiferro-
magnetic� nearest- and next-nearest-neighbor interactions.
From the finite-size scaling analysis, both transitions from
�2�1� and row-shifted �2�2� ordered states to disordered
states turn out to be continuous and nonuniversal. The re-
entrance behavior of the �2�1� transition line is confirmed,
and the proximity to the transition line to the �2�2� state
makes it difficult to untangle the low-temperature behavior
unless quite large lattices are used. It was only possible to
obtain the precise large lattice data needed through the use of
GPU computing. No evidence for XY-like behavior is found,
and we conclude that there is probably a zero-temperature
bicritical point. Although the exponent 	 varies along the
transition line, the exponent ratio � /	 and � /	 seem to agree
with that of the 2D Ising universality class.
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(b)

(a)

FIG. 10. Finite-size scaling data collapsing along the path of
constant kBT /JNN=0.7 for root-mean-square order parameter and its

susceptibility, respectively. h�= 
1−
Hc

H 
 and h= �1− H
Hc �. Data are for:

L=32, �; L=64, �; L=128, �; L=256, �.

FIG. 11. Fourth order cumulant U versus field H along the path
of constant kBT /JNN=0.45 for lattice size L=64,128,256.

(b)

(a)

FIG. 12. Finite-size scaling data collapsing along paths of con-
stant kBT /JNN=0.5 for root-mean-square order parameter and its
susceptibility, respectively. Data are for: L=80, �; L=100, �; L
=120, �; L=160, �; L=200 �.
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